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Abstract

Some recent works have shown promising results in using deep learning, in partic-1

ular convolutional neural networks (CNN), for collaborative filtering (CF) [1, 2].2

These approaches employ deep neural networks to learn high order implicit cor-3

relations between users and items.4

Up until now, deep learning based methods in collaborative filtering have focused5

on learning user-item interactions solely based on IDs as item representations.6

Modeling user-item interactions based on more extensive item features can pro-7

vide more context with which we may recommend items to a user. By including8

content features, we can implicitly learn properties of items that similar users may9

prefer.10

In this work, we extend Neural Collaborative Filtering (NCF) [1], to content-11

based recommendation scenarios and present a CNN based collaborative filter-12

ing approach tailored to image recommendation. We build upon the Pinterest13

ICCV dataset used in [1] so as to include image features, and use it to make14

content-based image recommendations. This content-based approach, Content-15

NCF, proves successful in predicting user item interactions on our new Pinterest16

Image 2019 dataset.17

1 Introduction18

There is a large amount of visual information available in today’s online world. Users are constantly19

faced with the dilemma of sifting through a large volume of data to find relevant and novel con-20

tent. Recommender Systems (RS) aim to solve this by predicting the user’s rating on an item, or21

recommending items to users based on their preferences.22

Based on a user’s profile and their interactions with past items, recommender systems find new23

items which may be of relevance to them. In general, these recommendations are generated based24

on user preferences, item features and past user-item interactions. Many RSs exploit textual data to25

recommend items and content to users, even in the presence of image content. Due to the abundance26

of visual information online today, there has been recent success in making recommendations based27

on visual features in addition to user features and textual data for items [3].28

The problem of data sparsity that often plagues recommender systems is due to insufficient infor-29

mation on a user’s preferences. Content based image recommendations may solve this problem by30
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extracting latent information about the user’s preferences from images. Our work will build upon31

existing literature on CNN based collaborative filtering [2, 4] and extend them to make content based32

image recommendations.33

It is known that a convolutional neural network (CNN) is good at learning local features, and the34

number of feature maps can reveal multiple aspects of local dimension correlations. ConvNCF [4]35

and SECNCF [2] employ CNNs to learn high-order correlations among embedding dimensions.36

Both these works have shown promising capability to handle content information and mention the37

possibility of future work in this direction.38

2 Related Work39

Among different techniques used by RSs, collaborative filtering (CF) [5] is one of the most popular.40

The goal of a CF algorithm is to suggest new items or to predict the utility of a certain item for a41

particular user based on the user’s previous likes and the opinions of other like-minded users. The42

opinions of users can be obtained explicitly from the users, i.e., ratings and reviews, or through im-43

plicit feedback, which indirectly reflects users’ preference through behaviours like watching videos44

or clicking items. In the next section we will discuss few CF based methods which motivate our45

project idea.46

2.1 Matrix Factorization (MF)47

Many areas in machine learning use the idea of learning latent (hidden) factors. The MF represents48

both items and users by vectors which are obtained from their interaction matrix [6]. The high49

correlation between these user and item factors lead to a recommendation. In these set of methods,50

users and items are mapped to a joint latent space of dimensionality k.51

Each item i is associated with a vector qi ∈ Rk , and each user u is associated with a vector52

pu ∈ Rk. The elements of a qi would capture the extent of latent factors of that particular item.53

The user’s interest in items is captured by the elements of pu. Finally, the dot product between qT
i54

and pu captures the overall interest of user u in the item i. Following equation captures the above55

mentioned steps.56

r̂ui = q>i pu (1)

To learn the latent factors, pu and qi, the method involves following minimization of the regularized57

squared error on the set of known ratings where L is the training set.58

min
q∗,p∗

∑
(u,i)∈L

(rui − qi
>pu)

2
+ λ(||qi||22 + ||pu||2) (2)

Recent works have shown limitation of MF caused by the use of simple inner product to capture the59

complex user-item interaction in the latent space. Recently, this has motivated researchers to use60

Deep Neural Networks (DNNs) to model this interaction function and we are going to exploit the61

same for the task of content based image recommendation.62

2.2 Neural Collaborative Filtering (NCF)63

Deep Learning (DL) has shown to be promising for problems in recommender systems. This in-64

cludes, in a broader sense, an opportunity to reinvent the way we handle the user-item interactions.65

Mainly, DL methods are able to capture the non-linear relationship between users and items ef-66

fectively. Xiangnan He et al. [1] proposed one such seminal method called Neural Collaborative67

Filtering (NCF) which effectively captures the non-linearities in user-item relationships by adopting68

a multilayer representation. NCF’s predictive model can be formalized as equation 3,69

ŷui = f(P>vU
u ,Q

>vI
i |P,Q,Θf ) (3)

where P ∈ RM×K and Q ∈ RN×K , denote the latent factor matrix for users and items. Also, vU
u70

and vI
i represent feature vectors for user u and item i respectively. f is a neural network and Θf71
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Figure 1: Framework for Neural Collaborative Filtering [1]

is the model parameter. Since φx is the mapping function for the x-th layer as given in Fig 1, f72

can be formulated as equation 4. To learn the model parameters authors of NCF use straightforward73

regression with squared loss.74

f(P>vU
u ,Q

>vI
i ) = φout(φX(..φ2(φ1(P>vU

u ,Q
>vI

i )) (4)

It is interesting to note that, stacking more layers in NCF is proven to be beneficial to the recom-75

mendation accuracy which also encourages the effectiveness of using deep models for collaborative76

recommendation. There are two drawbacks in employing NCF to the task of image recommenda-77

tions. Firstly, NCF simply stacks the user and item embeddings and feeds it to the DNN i.e it does78

not explicitly consider the correlation among embedding dimensions [4]. On the other hand, in the79

context of content based image recommendations, explicitly modelling the pairwise correlation be-80

tween embedding dimensions becomes very important. Secondly, it does not make use of content81

information while performing CF and relies on user and item IDs instead. This motivates us to use82

the appropriate image representation along with the Convolutional Neural Network (CNN) within83

the NCF framework. Next section discusses our project idea in detail.84

3 Our Contribution85

While CF based recommendations exploit similar users’ ratings, content-based recommenders rec-86

ommend an item to a user based on the content and description of the item. For multimedia items87

like images and videos, extracted visual features have richer semantics which can capture more88

potential user preferences. With these richer semantics, it becomes more important to find the cor-89

relation between user and item embedding dimensions. CNNs have been shown to be beneficial for90

this, as the correlation among multiple dimensions could be represented by a convolutional filter [4].91

To summarize, this project aims to build a content based image recommender system which exploits92

advantages of a CNN based NCF framework. Our contribution is two-fold as follows.93

3.1 Pinterest Image Dataset 201994

Our initial plan was to use the Pinterest data used in the NCF paper to train and evaluate ContentNCF.95

However, it did not work out to be feasible since for our models, it is important to preserve the image96

content while training. The Pintereset data used in NCF simply maintains the ID numbers for images97

and completely ignores the URL or content information. To deal with this problem, we create our98

own dataset (Pinterest Image 2019) as described in the following sections.99

3.1.1 Preprocessing100

To create the training and testing data to suit our needs, we use the Pinterest ICCV dataset [7]. The101

dataset contains a mapping of boards, which represent users, to their pins, which represent images.102

3



Users “pin” images to their own boards, showing their preferences of these images. In our dataset,103

each image is represented by a unique ID, as well as a URL. During training, this maintained URL104

for every user item interaction is used to extract the features. Each user may have consumed multiple105

images, and each image may have been consumed by multiple users. Also, each such user-image106

entry is marked as 1 or 0 indicating whether the user has consumed the item or not. This way we107

have four columns in our training file where each row takes the form: user ID, image ID, binary108

interaction, image URL. Processing all of the Pinterest ICCV data spread across multiple bson files109

led us to arrive at a very large dataset, surpassing our computing power. As such, we prune our110

dataset to arrive at a filtered dataset containing 500 users and 24498 user-image interactions.111

3.1.2 Feature Extraction112

With focus on the pure collaborative filtering setting, NCF uses only the identity (ID) of an item113

as the input feature, transforming it to a sparse binary vector with one-hot encoding. The sparse114

representation, vI
i = [0, 0, 1, 0, 0, 0, . . .], is mapped to a dense vector, Q>vI

i , that represents an115

item embedding. This is then fed into a multi-layer neural architecture in NCF. We extract feature116

representations from the images themselves as described below.117

CNN With ContentNCF, our goal is to leverage image features to get a richer feature representation118

than the item IDs. To obtain the content information for each image, we download the image using119

its unique URL and save it in a file named after its ID. Next, we face the non-trivial problem of120

representing the image as a vector that describes it effectively and accurately. As we know, deep121

learning methods have achieved the most success in computer vision, and many powerful deep122

models based on CNN have shown promising results in learning features from 2D image data. We123

use VGGNet with pre-trained weights to extract features from the image and represent it as a feature124

vector. VGGNet uses only 3 × 3 convolutional layers stacked on top of each other in increasing125

depth. Alog with the convolutional layer there are max pooling layers which handle the reducing126

volume size. Two fully-connected layers, each with 4,096 nodes are then followed by a softmax127

classifier. We pop the VGG layers and remove the last softmax layer. This allows us to take the128

output of last fully connected layer as an image representation.129

PCA The above approach leaves us with a 4096 dimensional representation of each image. Next,130

we use Principal Component Analysis (PCA) to reduce the dimensionality of image representations131

to the number of latent factors configured in our algorithm. Thus, an image is finally represented by132

a k-vector, which is then fed into the ContentNCF architecture described in the following section.133

3.2 Content Neural Collaborative Filtering - ContentNCF134

3.2.1 Architecture135

See Figure 2 for an architecture diagram of ContentNCF. For the purpose of our discussion of the136

algorithm, let the latent space used in the Generalized Matrix Factorization (GMF) layer have di-137

mension k, and let the first layer of the Multi-Layer Perceptron (MLP) take input with dimension138

d.139

User Features We obtain two dense representations of the input from the sparse input vector140

vU
u = [0, 1, 0, 0, 0, . . .] for user u. We call these two representations vGMF

u ∈ Rk, which we will141

use as input into the GMF layer, and P>vI
i = vMLP

u ∈ Rd/2, which we will input into the MLP.142

vGMF
u is “MF User Vector” and vMLP

u is “MLP User vector” from 2.143

Dense Layers We use two densely connected layers, as shown in 2, to learn rich vector represen-144

tations of the input image. The output of each dense layer is then passed into the GMF Layer and145

the MLP.146

As noted in previous sections, we are using the image itself as input for item i in ContentNCF, rather147

than an image ID as in NCF [1]. We obtain a rich vector representation, vik ∈ Rk, of the image148

using a CNN and PCA, as described in the previous section on feature extraction.149
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Figure 2: Framework for Content Based Neural Collaborative Filtering (ContentNCF)

To learn rich representations from our already reduced image vector, vik, we can use densely con-150

nected layers. Note that a densely connected layer will feed each of the k features in vik into each151

of its neurons. This could ensure that we capture all of the information and patterns encoded in vik.152

For the dense layer feeding into the GMF layer, for input vik we let the output of this dense layer be153

vGMF
i ∈ Rk.154

For the dense layer feeding into the MLP, for input vik we let the output of this dense layer be155

vMLP
i ∈ Rd/2. The rationale for this is that we wish to concatenate the latent vector representation156

of the image with user vector vMLP
u ∈ Rd/2 (as per 2) to create a valid input into the first layer of157

the MLP with dimensions d.158

GMF Layer The GMF layer computes user item interactions by computing the element wise159

product of its inputs, as in NCF [1]. It takes in both vGMF
u (“MF User Vector” in 2) and vGMF

i (the160

output of the dense layer which feeds into the GMF layer, as shown in 2). Note that vGMF
u ,vMLP

u ∈161

Rk. The output of this layer will be the element wise product of vectors vGMF
u and vGMF

i . Let us162

call the output of the GMF layer vGMF
u � vMLP

i = vGMF ∈ Rk.163

MLP Layers The MLP in our model has multiple layers can be passed in as an argument to our164

implementation. By using multiple layers, it learns higher order patterns and correlations between165

the user and image. Recall that the dimensions of the input of the first layer of the MLP (“MLP Layer166

1” in 2) is d× 1. We create the input into the first layer of the MLP by concatenating vMLP
u ∈ Rd/2167

(i.e. “MLP User Vector” in 2) and vMLP
i ∈ Rd/2 (the output of the dense layer which feeds into the168

MLP, as shown in 2).169

We concatenate vMLP
i and vMLP

u to create a d-dimensional vector and feed it into “MLP Layer 1”.170

Let us call the final output of the MLP vMLP ∈ RdN , where dN is the dimension of the output of171

the N th layer.172

Prediction Layer Finally we concatenate vGMF and vMLP and pass the resulting vector into the173

prediction layer (i.e. “NeuMF Layer” in 2). The prediction layer is densely connected and uses a174

sigmoid activation function in order to restrict the output to be in (0, 1). This final layer will output175

a prediction for the interaction between user u and item i, ŷui ∈ (0, 1). ŷui denotes how likely i is176

salient to u, and therefore should be recommended to u.177
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3.2.2 Learning with Log Loss178

Traditional squared loss methods to learn parameters may not work well with the implicit data. This179

is because yui ∈ {0, 1} (i.e. is binary), indicating whether or not there exists a user-item interaction,180

for implicit data; if we were to use squared loss, however, we are to assume that yui comes from a181

Gaussian distribution [8]. We use the approach used in the NCF paper by formulating ContentNCF182

as a probabilistic model and optimize it with the log loss:183

L = −
∑

(u,i)∈y

yui log ŷui + (1− yui) log (1− ŷui) (5)

We use the above objective function which we minimize using the Adam optimization algorithm.184

During training, we randomly sample negative instances from unobserved user-item interactions.185

The number of negative samples per positive sample can be passed in as an argument to our im-186

plementation. Our results from varying the number of negative samples per positive sample are187

described in the Results section.188

4 Experiments189

4.1 Evaluation Methodology190

The model is trained on the user-image interaction matrix. For every positive interaction of a user191

we add certain number (num negative) of negative examples. To evaluate the performance of our192

ContentNCF we use the leave-one-out strategy. For each user, on average we have 5 interactions193

in the test set and rest of the interactions are utilized for training. For each such test image, we194

randomly sample 100 images that the user has not interacted with. The goal of ConentNCF is now195

to rank the positive test image among these 101 images. This common strategy is also followed in196

[9]. The algorithm then generates the list of top-K recommendations which is evaluated by hit ratio197

(HR) and Normalized Discounted Cumulative Gain (NDCG) [10]. HR checks if the test image is198

present in the top-K list and NDCG measures the position of the hit by assigning higher scores to199

hits at top ranks. We calculated both metrics for each test user and reported the average score. We200

have made our implementation open source and it can be found here. 1201

4.2 Results202

This section demonstrates the recommendation performance of ContentNCF with different param-203

eter settings. In the first set of experiments we show the working of ContentNCF with top-K = 5,204

k = 20 and num negative = 4 where k is the number of latent factors used while representing a user205

and an image.206

Table 1: ContentNCF (Top-K = 5, k = 20, num negative = 4)

Iterations Evaluation Metrics
HR NDCG Loss

init 0.049 0.0293
1 0.4759 0.2968 0.4659
2 0.4824 0.3092 0.2831
3 0.5127 0.3295 0.2758
4 0.5135 0.323 0.2688
5 0.5118 0.3222 0.2649

Table 1 and Table 2 show the performance of ContentNCF after every iteration. The top-K = 5207

recommendations task is more difficult than top-K = 10 and hence we get lower HR of 0.51 opposed208

to HR of 0.74 for top-K = 10. In further experiments we set top-K to 10.209

In the next set of experiments we compare the performance by changing the number of latent factors210

(k). The latent factor influences the final image representation we get from PCA and higher values of211

1https://github.com/udhavsethi/neural_collaborative_filtering
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Table 2: ContentNCF (Top-K = 10, k = 20, num negative = 4)

Iterations Evaluation Metrics
HR NDCG Loss

init 0.1216 0.0534
1 0.7282 0.3867 0.453
2 0.7273 0.3885 0.2814
3 0.7257 0.4041 0.272
4 0.7412 0.4023 0.2658
5 0.742 0.4015 0.2629

Figure 3: ContentNCF (Top-K = 10, varying k, num negative = 4)

k would give us succinct representation of an image. Both, HR and NDCG increases as we increase212

k. HR jumps from 0.74 (k = 20) to 0.91 (k = 64) and NDCG reaches 0.53 for k = 64 (Figure 3).213

Figure 4 shows the performance of ConentNCF where number of negative samples per positive sam-214

ple (num negative) ranges from 4 to 10. It can be seen that, best HR is achieved when num negative215

is equal to 10. NDCG consistently increases till num negative = 8 and then decreases further for216

num negative = 10.217

In our last set of experiments (Figure 5) we compare our ContentNCF with NCF [1] on Pinterest Im-218

age 2019 dataset. ContentNCF with the best parameter setting achieves HR and NDCG of 0.940 and219

0.582 resp. Although ContentNCF fails to outperform NCF model in terms of accuracy measures, it220

has potential to give more diverse recommendations given it is a content based RS.221

5 Discussion and Future Work222

Instead of a simple embedding concatenation, ConvNCF [4] and SECNCF [2] employ CNNs to223

explicitly model the pairwise correlations between embedding dimensions. While ConvNCF applies224

outer product on the user and item embeddings, SECNCF combines different embeddings together225

in the same direction to form stacked embeddings. We plan to employ one of these techniques or226

their variants to model embeddings in our architecture as part of the future work.227

There has been a lot of consistent effort in increasing the accuracy of recommender systems. A228

good recommender system should aim to improve user satisfaction apart from increasing traditional229

accuracy measures. Our goal in this possible extension would be to build on ContentNCF to produce230

diverse yet relevant recommendations by exploiting content information [11], [12]. There exist231
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Figure 4: ContentNCF (Top-K = 10, k = 64, varying num negative)

Figure 5: Comparison between NCF and ContentNCF

several ways in which we can formalize diversity. For example, in order to measure the diversity in232

a list of recommended items, Qu, we can look at the pairwise distances between items in the list.233

We can then calculate the diversity value by averaging the normalized Hamming distance, H(i, j),234

for all item pairs i, j in Qu. Equation 6 can be used to calculate the diversity.235

Diversity =
2

|Qu|(|Qu| − 1)

∑
i∈Qu

∑
j∈Qu,j 6=i

H(i, j) (6)

6 Conclusion236

We present ContentNCF, a content-based RS for learning user-item interactions, as opposed to the237

recent deep learning based methods which use only IDs as item representations. We propose the use238

of CNNs to leverage visual features from images to learn rich feature representations. We observe239

that ContentNCF achieves relevance prediction accuracy that is comparable with that of NCF, but240

also has the ability to model content information. With this ability it has potential to give more241

diverse yet relevant recommendations which are shown to increase the user satisfaction.242
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